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The constants of motion of the half-filled four-point Hubbard model with cyclic 
boundary conditions arc given in Wannier and Bloch representation. The total 
number operator and total spin operator are conserved and spin-reversal sym- 
metry exists. In Wannier representation we have additionally the C4~ symmetry 
and in Bloch representation we have the total momentum operator which is 
conserved. The anticommutation relations for Fermi operators with spin are 
implemented using computer algebra. Using computer algebra, all the constants 
of motion are given. The one-dimensional Hubbard model admits a Lax 
representation. From the Lax pair we find a new constant of motion. 

1. I N T R O D U C T I O N  

The  H u b b a r d  m o d e l  p lays  a n  i m p o r t a n t  role in  the  m o d e l i n g  of 

m a g n e t i s m ,  charge  dens i ty  waves,  a n d  h i g h - T  c supe rconduc t iv i t y ,  since the 

i n t e r a c t i o n  t e rm of the H u b b a r d  H a m i l t o n i a n  can  be wr i t t en  as 

n,Tn,~=_�88 - - o ~ i ) + t ~ i z + � 8 9  i --  1) S2 "~- l(~i-J - 1 ) R ~  

Here  Si are the spin  o p e ra t o r s  
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and R~ are the quasispin operators 

~iz l__(C~TC~i~ ~-Ci$CiT), l~iy__L(C + C+ ~ 1 2 - 2 i '  i'c i.t--citco.), iz=~(niT+ni.~ - 1 )  

Both the spin operators and quasi spin operators form a Lie algebra under 
the commutator. 

This decomposition of the interacting part makes it possible to search 
for magnetism ( ( S i ) r  0), charge ordering ( ( R i z ) r  0), or superconduction 
( ( R i x )  r  in the Hubbard model. 

We investigate the constants of motion of a four-point system with 
cyclic boundary conditions in the Bloch representation and the Wannier 
representation. We apply computer algebra (Hearn, 1991; Steeb and 
Lewien, 1992) in this study. The study is limited to the half-filled case, i.e., 
Ne= N (where N is the number of lattice sites and Ne is the number of 
electrons) and with total spin in the z direction S~=0. We also discuss 
the degeneracy in connection with the von Neumann and Wigner (1929) 
theorem. 

In Wannier representation the Hubbard model is given by 

4 4 

t~I=t 2 2 (C~+laCia~-C~Ci+la)~-U 2 l'liSHi~ ( 1 )  
i = 1  a i = 1  

where 5 = 1. Thus the hopping integral t only acts for nearest neighbors. 
The spectrum of the system can also be found by using the Bloch 

representation of the Hamiltonian (4), i.e., 

Ck~Ck~ + 6(kl _ k z + k 3 _  k t c t (2) 
ka 4 kl,k2,k3,k 4 

where 

e(k) = 2t cos k 

(ka ~ k, with a the lattice spacing) and 

(3) 

Computer algebra is a helpful tool in studying Fermi systems. We 
show how the anticommutation relations can be implemented with 
computer algebra. Then we give an application to the Hubbard model. In 
computations two tasks have to be performed. Let J be a linear operator 
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expressed as Fermi operators and let [~b) be a state expressed with Fermi 
creation operators and the vacuum state 10). Then we have to evaluate the 
new state 4 [~b), where we have to apply that cyo 10)=0. The second task 
arises in connection with the Heisenberg equation of motion 

d4 
ih ~ = [4 , /g ] ( t )  

where /~ is the Hamilton operator of the system. This equation describes 
the time evolution of the linear operator A. To solve this equation we have 
to evaluate 

E4, ~q], E4, E4,/?]],.. .  

I f  

f4, ~r] = o 

then 4 is called a constant of motion (conserved quantity). Both tasks can 
be implemented with computer algebra packages. There are several good 
computer algebra packages available. For our purpose we use REDUCE 
(Hearn, 1991; Steeb and Lewien, 1992). We can easily implement the 
anticommutation relation of the Fermi creation and annihilation operators. 
As an example we consider the four-point Hubbard model with cyclic 
boundary conditions. We give a higher-order conserved quantity. 

2. CONSERVED QUANTITIES 

The total number operator is given by 

4 

~ e : = Z  Z 
i=1 ~e {t+} 

F/io- 

with the eigenvalues Ne=O, 1, 2, 3, 4. The total spin operator in the z 
direction is given by 

4 

i = 1  

with the eigenvalues 0, i, _�89 1, -1 ,  3, - 3 ,  2, -2 .  Since the Hubbard 
model (1) commutes with Ne and Sz, the spectrum can be calculated in 
each of the subspaces separately. In the following we consider Ne=4 
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(so-called half-filled case) and S~ = 0. For Ne = 4, Sz = 0, the dimension of 
the Hilbert space is given by dim ~?" = 36. A basis is given by 

{ctTc] t t Om,[Cn. L 10>; i<j, m < n; i =  1, 2, 3; m = 1, 2, 3} 

where q ,  I0) = 0  and (010)  = 1. 
Since the Hamilton operator (1) admits C4~ symmetry and it is 

invariant with respect to spin reversal to spin reversal, the solution space 
can be further decomposed into invariant subspaces. The group C4v admits 
five classes and therefore five irreducible representations. Four representa- 
tions, AI, A2, A3, and M4, are one-dimensional and one, As, is two-dimen- 
sional. The group-theoretic reduction with the help of the group C4v and 
spin reversal to the invariant subspaces Si has been investigated by Villet 
and Steeb (1990). 

The Hamiltonian 
operator 

(2) commutes also with the total momentum 

/3 = ~, knko 
k~ 

where k is given by (3). Obviously the eigenvalues of/3 are given by -re/2, 
0, 7z/2, ~. Thus the subspaces with a given total momentum are invariant. 
A basis for given momentum P is then given by 

{~t ~i c ~ c? [O>;klCke, k3r t'kiTt'k2T k3$ k4,~ 

where 

k 1 q- k 2 -'1- k 3 + k 4 = P, m o d u l o  2re 

Spin reversal symmetry also exists and the solution space is decom- 
posed into subspaces Vi(i= 1, 2 . . . .  ,8)  with dimensions 4, 4, 4, 6, 4, 4, 
3,7. 

It seems that the total momentum operator/3 in the Bloch representa- 
tion is related to the group C4, which has four irreducible one-dimensional 
representations and describes rotation by 90 ~ 180 ~ 270 ~ and 360 ~ = 0  ~ 
The operator/3 has four eigenvalues. The question therefore arises of how 
the symmetries a~ and cra of the C4v symmetry (i.e., reflections in two planes 
of symmetry) appear in the Bloch representation. 

In both the above approaches degeneracy is still found in some of the 
subspaces. 

Von Neumann and Wigner (1929) proved the following theorem: Real 
symmetric matrices with a multiple eigenvalue form a real algebraic variety 
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of codimension 2 in the space of all real symmetric matrices. This implies 
the famous noncrossing rule, which asserts that a generic one-parameter 
family of real symmetric matrices contains no matrix with a multiple eigen- 
value. Generic means that if the Hamilton operator admits symmetries, 
the underlying Hilbert space has to be decomposed into the invariant 
subspaces. 

These degeneracies in the four-point Hubbard model indicate that 
higher invariants (conserved.quantities) may exist. 

Recently, Olmedilla and Wadati (1987) have found a Lax pair L m and 
M,,, for the one-dimensional Hubbard model in the Wannier representa- 
tion, where m denotes a lattice site and 

d L  m 
dt = M m + l L m - - L m m m  

From the Lax representation we find that besides the constants of 
motion Sz and Ne we also find the higher-order conserved quantity 

4 
+ t C= ~ [(CjTC j l,--cj_lTCjT)(nil+nj_l l) 

j = l  

+(cJici 1,--c -l,cj,)(njT+nj 10] 
4 

j - - I  o- 

The calculation that C is a constant of motion, i.e., [C,/4] = 0, is rather 
lengthy. The use of computer algebra is helpful. The existence of this 
higher-order constant of motion is related to the fact that the one- 
dimensional Hubbard model admits a Lax representation. 

3, IMPLEMENTATION 

Let us now introduce the Fermi anticommutation relations and their 
implementation with computer algebra. We consider a family of linear 
operators on a finite-dimensional vector space V, 

@o, cfo, j = l ,  2 . . . .  ,N, cr~{T,,~} 

with 

ck~,,1 + = 0 
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and 

[cy~, c2 , ]  + = 6yk6~,I  

where I is the identity operator in the finite-dimensional vector space and 
k = 1, 2 , . . . ,  N. The indexes j, k are the quantum numbers together with 
the spin o-. From the relations given above it follows that 

(c~,) 2 = 0, (cy~) 2 = 0, j = 1, 2 . . . . .  N 

We also have to introduce an ordering for the spin. We put all spin-up 
operators on the left-hand side. Furthermore, we have to introduce an 
ordering for the quantum number ( index)j ,  where j =  1, 2 . . . . .  N. We set 
the Fermi operators with the lower quantum number on the left-hand side, 
i.e., Jl <~J2 <~ " ' "  <~JN" The listing in REDUCE (Version 3.4) is given in 
the following program: 

Zci(j): fermi creation operator with spin up; 

Zc2(j): fermi annihilation operator with spin up; 

Zdl(j): fermi creation Operator with spin down; 

Zd2(j): fermi annihilation operator with spin down; 

operator cl, dl, c2, d2, N, HK, HU, CL; 

noncom cl, dl, c2, d2, N, HK, HU, CL; 

for all j let cl(j)*cl(j) = O; 

for all j let c2(j)*c2(j) = O; 

for all j let dl(j)*dl(j) = O; 

for all j let d2(j)*d2(j) = O; 

for all j lot c2(j)*ci(j) = - cl(j)*c2(j) + i; 

for all j,k such that j neq k let 

c2(j)*cl(k) = - cl(k)*c2(j); 

for all j let d2(j)*dl(j) = - dl(j)*d2(j) + i; 

for all j,k such that j neq k let 

d2(j)*dl(k) = - d1(k)*d2(j); 

for all j,k let dl(j)*cl(k) = - ci(k)*di(j 

for all j,k let d2(j)*c2(k) = - c2(k)*d2(j 

for all j,k let dl(j)*c2(k) = - c2(k)*di(j 

for all j,k let d2(j)*cl(k) = - ci(k)*d2(j 
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f o r  a l l  j , k  such t h a t  j l e q  k l e t  c l ( j ) * c l ( k )  = - c l ( k ) * c l ( j ) ;  
for all j,k such that j leq k let c2(j)*c2(k) = - c2(k)*c2(j); 

for all j,k such that j leq k let d1(j)*d1(k) = - d1(k)*d1(j); 

for all j,k such that j leq k let d2(j)*d2(k) = - d2(k)*d2(j); 

Z HK: kinetic part of four point Hubbard model (10); 

HK := t * (c1(2) *c2(1)+c1(3) *c2(2)+c1(4) *c2(3)+c1(1) *c2(4)  
+c1(1)*c2(2)+c1(2)*c2(3)§ 
+d1(2)*d2(1)+dl(3)*d2(2)+d1(4)*d2(3)+d1(1)*d2(4) 

+d1(1)*d2(2)+d1(2)*d2(3)+d1(3)*d2(4)+d1(4)*d2(1)); 

Z HU: interacting part of four point Hubbard model (I0); 

HU := U*(cl(1)*c2(1)*d1(1)*d2(1)+c1(2)*c2(2)*dl(2)*d2(2) 

+cl(3)*c2(3)*dl(3)*d2(3)+c1(4)*c2(4)*d1(4)*d2(4)); 

Z N: number operator given by (11) 

N := cI(i)*c2(I)+cI(2)*c2(2)+cI(3)*c2(3)+ci(4)*c2(4) 

+d1(1)*d2(1)+dl(2)*d2(2)+dl(3)*d2(3)+d1(4)*d2(4); 

Z Commutator of HK and N; 

r2 := HK*N - N*HK; 

Zconstant of motion given by (14) ;  
CL := ( c l ( 1 ) * c 2 ( 4 ) - c l ( 4 ) * c 2 ( 1 ) ) * ( d l ( 1 ) * d 2 ( 1 ) + d l ( 4 ) * d 2 ( 4 ) )  

+ ( d l ( 1 ) * d 2 ( 4 ) - d l ( 4 ) * d 2 ( 1 ) ) * ( c l ( 1 ) * c 2 ( 1 ) + c l ( 4 ) * c 2 ( 4 ) )  
- ( c l ( 1 ) * c 2 ( 4 ) - c l ( 4 ) * c 2 ( 1 ) + d l ( 1 ) * d 2 ( 4 ) - d l ( 4 ) * d 2 ( 1 ) )  
+ ( c l ( 2 ) * c 2 ( 1 ) - c l ( 1 ) * c 2 ( 2 ) ) * ( d l ( 2 ) * d 2 ( 2 ) + d l ( 1 ) * d 2 ( 1 ) )  
+ ( d l ( 2 ) * d 2 ( 1 ) - d l ( 1 ) * d 2 ( 2 ) ) * ( c l ( 2 ) * c 2 ( 2 ) + c l ( 1 ) * c 2 ( 1 ) )  
- ( c l ( 2 ) * c 2 ( 1 ) - c l ( 1 ) * c 2 ( 2 ) + d l ( 2 ) * d 2 ( 1 ) - d l ( 1 ) * d 2 ( 2 ) )  
+ ( c l ( 3 ) * c 2 ( 2 ) - c l ( 2 ) * c 2 ( 3 ) ) * ( d l ( 3 ) * d 2 ( 3 ) + d l ( 2 ) * d 2 ( 2 ) )  
+ ( d l ( 3 ) * d 2 ( 2 ) - d l ( 2 ) * d 2 ( 3 ) ) * ( c l ( 3 ) * c 2 ( 3 ) + c l ( 2 ) * c 2 ( 2 ) )  
- ( c l ( 3 ) * c 2 ( 2 ) - c l ( 2 ) * c 2 ( 3 ) + d l ( 3 ) * d 2 ( 2 ) - d l ( 2 ) * d 2 ( 3 ) )  
+ ( c l ( 4 ) * c 2 ( 3 ) - c l ( 3 ) * c 2 ( 4 ) ) * ( d l ( 4 ) * d 2 ( 4 ) + d l ( 3 ) * d 2 ( 3 ) )  
+ ( d l ( 4 ) * d 2 ( 3 ) - d l ( 3 ) * d 2 ( 4 ) ) * ( c l ( 4 ) * c 2 ( 4 ) + c l ( 3 ) * c 2 ( 3 ) )  
- ( c l ( 4 ) * c 2 ( 3 ) - r  

Zcommutators; 

r3 := HK*CL - CL*HK; 

r4 := HU*CL - CL*HU; 

Fig. l. Program: Fermi operatorsand Hubbard model. 
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To summarize: We have shown that the Fermi commutat ion relation 
can be implemented with the help of computer  algebra. Using computer 
algebra, we have demonstrated that the number operator  and the operator  
(~ given by (4) are constants of motion. We can also easily show that the 
total momentum operator is a constant of motion of the Hamiltonian (2). 

The program has been run on a 486 AT c o m p u t e r  under DOS. '  
Finally, we mention that the program given above can be implemented 
with C +  + applying object-oriented programming (Steeb et al., 1993). 
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